EDGARS CREEK - RONALD STREET FOOTBRIDGE

INFORMATION EVENING

D18/420644

Tonight's Agenda

- Location and brief history
- Feasibility study outcomes and adopted alignment by Council
- Structural form design options
- Interactive discussion
- Project Timelines
- Further questions

Location

The old bridge

The original bridge built well below frequent flood levels, requiring regular repair until destroyed by flooding in late December 2016

Feasibility Study

- Feasibility study to investigate options for a replacement bridge and/or formalised path was completed and considered by Council at its meeting on 11 April 2018.
- Council endorsed to proceed with Option 1B of the Feasibility Study Report, which is to construct a new bridge just south of the original location with a path to Ronald Street.

Concrete Path along Ronald Street

Concrete Path through parkland

Concrete Path through parkland

Concrete Path leading onto raised boardwalk

Bridge crossing from east to west

ADVANTAGES	DISADVANTAGES
Main Span 0% gradient for flat levelcomfortable to all users	 1/14 gradient on approaches may be unpleasant for cyclists require safety handrails, thus increase the overall structure width
 Clearance below Approaches Maintain access under the approach spans (on both sides) 	 Clearance below Approaches increase overall length of elevated structure (97m) visual impact to the environment

OPTION 2

ADVANTAGES	DISADVANTAGES
 Structure 3% gradient acceptable to all users safety rails are not required, thus no additional width of structure smooth appearance 	 Structure 3% gradient Increase overall length of elevated structure (110m)
 Clearance below Approaches Maintain access under the approach spans (on both sides) 	 Clearance below Approaches Increase overall length of elevated structure (110m) Visual impact to the environment

ADVANTAGES	DISADVANTAGES
Structure 1/14 gradient • Reduce overall length of elevated structure (89 m)	 Structure 1/14 gradient may be unpleasant for cyclists require safety handrails, thus increase the structure width
 No clearance below West approach Lower the height of structure, thus less visual impact while maintaining linkage to existing north/south path on west side of creek 	 No clearance directly below West approach Block access along south bank of creek but still maintain linkage to existing north/south path on West

side of creek.

Option 3 – Project Costs

- Steel Bridge (~\$1.38M)
- Concrete Bridge (~\$1.54M)
- Timber Bridge (~\$1.16M)

Example of Steel Bridge

Steel Bridge (Cost Estimate \$1.38M)

ADVANTAGES

FRP decking

- 75 years design life
- free draining
- low maintenance

Steel members

- 100 years design life
- fast erection and installation

DISADVANTAGES

FRP decking

- can be seen through
- susceptible to damage (vandalism, fire)

Steel members

- maintain protective coating every 25 years
- Access required over water for maintenance

Steel Bridge Crossing Edgars Creek

Example of Concrete Bridge

Concrete Bridge (Cost Estimate \$1.54M)

ADVANTAGES	DISADVANTAGES
Concrete decking100 years design lifelow maintenanceopaque for privacy	Concrete deckingcrossfall required for drainagelonger construction time
Steel members (approach)100 years design lifefast erection and installation	Steel members (approach)maintain protective coating every 25 years

Concrete Bridge Crossing Edgars Creek

Example of Timber Boardwalk

(Cost Estimate \$1.16M)

ADVANTAGES

FRP decking

- 75 years design life
- · free draining
- low maintenance

Timber members

- natural aesthetics
- · fast erection and installation
- more favorable to curved horizontal alignment

DISADVANTAGES

FRP decking

- · can be seen through
- susceptible to damage (vandalism, fire)

Timber members

- 40 years design life
- More frequent maintenance
- short span with more piers (maintain bracing)
- susceptible to damage (vandalism, fire)

Decking

Barrier/Railing

Piers

Bridge	Steel	Concrete	Timber
Cost	~\$1.38M	~\$1.54M	~\$1.16M
Design Life	100 years	100 years	40 years
Construction Time	Fast	Long	Fast
Maintenance	Coating every 25 years with access required over water	Low	High, maintain bracing, timber members and capping
Damage	Durable	Durable	Susceptible
Aesthetic	Low/Moderate	Moderate	Low/Moderate
Span Length	10 – 14m (approaches)	10 – 14m (approaches)	4 – 6m (approaches)
Decking	FRP or Concrete	Concrete	FRP
Piers	Concrete and/or Steel	Concrete and/or Steel	Timber

Project Costs

PROJECT COST		
OPTION		COST
Steel Bridge & Steel Boardwalk – Vertical Alignment 1	\$	1,468,010
	·	•
Steel Bridge & Steel Boardwalk – Vertical Alignment 2	\$	1,500,680
Steel Bridge & Steel Boardwalk – Vertical Alignment 3	\$	1,380,890
Concrete Bridge & Concrete Boardwalk – Vertical Alignment 1	\$	1,631,360
Concrete Bridge & Concrete Boardwalk – Vertical Alignment 2	\$	1,682,180
Concrete Bridge & Concrete Boardwalk – Vertical Alignment 3	\$	1,542,425
Steel Bridge & Timber Boardwalk – Vertical Alignment 1	\$	1,263,440
Steel Bridge & Timber Boardwalk – Vertical Alignment 2	\$	1,294,430
Steel Bridge & Timber Boardwalk – Vertical Alignment 3	\$	1,155,830

Project Timelines

ACTIVITY	TIMELINE
Complete Design Phase and Apply for Melbourne Water Approval	November 2018 to February 2019
Planning Permit	March 2019 to May 2019
Construction Tender and Award Contract	May 2019 to July 2019
Construction Phase	September 2019 to May 2020

